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Abstract

The ratio of saturated to unsaturated fatty acids in maize kernels strongly impacts human and livestock health, but is a
complex trait that is difficult to select based on phenotype. Map-based cloning of quantitative trait loci (QTL) is a powerful
but time-consuming method for the dissection of complex traits. Here, we combine linkage and association analyses to fine
map QTL-Pal9, a QTL influencing levels of palmitic acid, an important class of saturated fatty acid. QTL-Pal9 was mapped to a
90-kb region, in which we identified a candidate gene, Zea mays fatb (Zmfatb), which encodes acyl-ACP thioesterase. An 11-
bp insertion in the last exon of Zmfatb decreases palmitic acid content and concentration, leading to an optimization of the
ratio of saturated to unsaturated fatty acids while having no effect on total oil content. We used three-dimensional structure
analysis to explain the functional mechanism of the ZmFATB protein and confirmed the proposed model in vitro and in vivo.
We measured the genetic effect of the functional site in 15 different genetic backgrounds and found a maximum change of
4.57 mg/g palmitic acid content, which accounts for ,20–60% of the variation in the ratio of saturated to unsaturated fatty
acids. A PCR-based marker for QTL-Pal9 was developed for marker-assisted selection of nutritionally healthier maize lines.
The method presented here provides a new, efficient way to clone QTL, and the cloned palmitic acid QTL sheds lights on
the genetic mechanism of oil biosynthesis and targeted maize molecular breeding.
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Introduction

The production of 817 million tons of maize in 2009 (http://

faostat.fao.org) makes it one of the most important crops in the

world, and it is projected to be the largest source of calories in the

human diet by 2020 [1]. Maize oil production in 2004 was ,2

million tons, a 54% increase from 1999 (http://faostat.fao.org).

The proper ratio of unsaturated to saturated fatty acids in maize

oil is necessary to maintain lower blood levels of serum cholesterol

and low density lipoproteins, and to avoid some immunological

diseases [2]. A high proportion of unsaturated fatty acids (.80%

in maize kernels) may exert potential curative effects on

inflammation and obesity [3]. As the major saturated fatty acid

in maize grain, palmitic acid plays an important role in achieving

an ideal saturated to unsaturated fatty acids ratio in corn oil.

Increasing the oil content of maize grain is an efficient

alternative to increasing total maize production to boost oil

supplies. High-oil maize lines are the product of long-term human

selection. The first high-oil stocks, IHO (Illinois High-Oil), were

created over 100 years of selection [4,5], and an additional set of

lines, BHO (Beijing High-Oil) reached the same kernel oil content

after only 18 generations of a more-directed selection [6].

Understanding the underlying mechanism that led to IHO and

BHO formation is very important for accelerating future high-oil

maize breeding [7]. Around 50 genes or QTLs (each with small

effects and mainly additive gene action) were observed underlying

the IHO oil concentration [8]. In contrast, five major (and

multiple minor) QTLs, with epistasis, were found to contribute to

maize kernel oil concentration in BHO lines [9]. The presence of

major QTLs was the main reason that the BHO population was

generated so quickly, in contrast with the creation of the IHO, in

which multiple minor (but no major) QTLs were found. The

functional genes that make up these five major QTLs in BHO are

not yet fully characterized. In fact, to date, very few functional

genes underlying the variation in levels and ratios of saturated fatty

acids have been reported in maize.

QTL mapping is still the most powerful tool for identifying the

genomic region that controls complex quantitative traits in animals

or plants. QTL fine mapping and cloning is, however, a logistical

challenge. Only a few QTLs have been cloned, and these

correspond to loci with major effects such as teosinte branched1 (tb1)

[10,11], vegetative to generative transition 1 (vgt1) [12], qHO6-DGAT1

(DGAT1) [13] and teosinte glume architecture1 (tga1) [14]. The

publication of the complete maize genomic sequence has made
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association mapping based on linkage disequilibrium (LD) a more

efficient method for functional gene cloning and validation [15–

17]. There are, however, two major disadvantages in association

mapping analysis: false positives caused by population structure

and lower statistical power due to rare alleles present at low

frequencies [18–20]. The combination of linkage and association

analysis to identify and validate sequence variation (gene/QTL

fine mapping) that is associated with beneficial phenotypes allows

the exploitation of the advantages of both analyses while

overcoming the limitations of each.

In a previous study, we identified the major QTL-Pal9, on

maize chromosome 9, which accounts for 42% of the phenotypic

variation of palmitic acid content in maize grain in a bi-parental

segregating population [9]. The objectives of this study were to

fine map QTL-Pal9 to the level of a single gene using linkage and

association analysis; to characterize the candidate gene and

identify the functional variation; to verify the association in

different genetic backgrounds; and to validate the functional

sequence variation using in vivo gene expression profiling and in

vitro complementation studies. A model explaining the underlying

gene function and a PCR-based marker for marker-assisted

selection of fatty acid composition in maize kernels are also

presented here. These findings provide useful insights for

understanding the genetic mechanism of oil biosynthesis, and

targeted, efficient maize molecular breeding.

Results

Primary QTL mapping of Pal9 using BC1S1:2 and BC2S2:3

populations
Line RIL129 was chosen from the recombinant inbred line

(RIL) population derived from B73, a normal-oil inbred line, and

By804, a high-oil inbred line [9]. It has the By804 allele in the

target QTL and displays a high level of palmitic acid. In a BC1S1:2

backcrossing population derived from RIL129 and B73 (recurrent

parent) and segregating for the QTL-Pal9 region, a major QTL

linked to palmitic acid levels was mapped between markers LB52

and umc2213 on chromosome 9 using 129 individuals. The

confidence interval around QTL-Pal9 is 11.5 cM with a maximal

logarithm of odds (LOD) score of 9.10. It explains 15%–28% of

the phenotypic variation for palmitic acid content (C16:0) and

concentration (C16:0/ALL), the ratio of saturated fatty acids

(SFA/ALL), the ratio of unsaturated fatty acids (UFA/ALL) and

the ratio of saturated fatty acids to unsaturated fatty acids (SFA/

UFA) (Table 1). The BC1S1 population was backcrossed and selfed

to create a BC2S2:3 population with 135 individuals. Fifty-six

markers scattered along the target region (Contig373; http://

www.maizesequence.org/) were developed based on the predicted

gene sequences (Table S1). These markers, along with 211

background markers that segregated in the parents of the original

RIL population, were mapped in these 135 individuals. A QTL

affecting the same traits was detected in the BC2S2:3 population,

and the genomic region containing the QTL was narrowed down

to 6 cM between LB52 and LD42, which contains ,1,400 kb.

The maximum LOD score increased to 47, and R2 varied from 43

to 83% for palmitic acid content and related traits (Table S2).

Development of informative recombinant lines and QTL
fine mapping via combined linkage and association
mapping

A larger mapping population containing 877 lines was created

in the BC2S1 generation to further fine map the region included in

QTL-Pal9. This population was genotyped using nine markers

residing in the target region between LB52 and umc2213. A

number of By804 fragments overlapping introgression lines

containing recombination events in the target genomic region

were identified (Figure 1A).

Meanwhile, a subset of 74 elite inbred lines (including 40

normal and 34 high-oil inbred lines) was chosen from a Chinese

Association Mapping Panel (CAM155) [21]. This subset contains a

relatively narrow genetic background and a LD decay distance of

,100 kb (r2 $0.1) in the target QTL region (Figure S1). Using

bioinformatics analysis, 14 PCR-based markers (Table S1) were

developed based on the annotated genes within QTL-Pal9. All the

developed markers were used to genotype the association panel

and seek associations. One marker, LD42, which was developed

from maize fingerprint map BAC AC218168 (http://www.

maizesequence.org/), showed significant statistical association

(P = 5.0E214) in the panel for C16:0 (Figure 1B). It was assumed

that the underlying gene of QTL-Pal9 is located in the region near

LD42. According to the results of linkage and association analyses,

two lines (07HL50-6 and 07HL40-3; Figure 1A) were selfed and

backcrossed to B73 to develop BC3S1 populations. Following the

screening of the two BC3S1 populations (149 individuals derived

from 07HL50-6 and 371 individuals from 07HL40-3), three useful

recombinants (08BL245-6, 08BL248-2 and 08BL168-7; Figure 1C)

were identified and selfed to develop BC3S2 populations for

progeny validation.

Fifty-four individuals of the BC3S2:3 population from 08BL245-

6, which contains the downstream fragment introgression from

By804 in the target genomic region, were significantly different

(P = 5.16E216) for C16:0/ALL among the three genotype classes

(homozygous for B73, homozygous for By804 and heterozygous;

Figure 2A; Table S3). The mean value of C16:0 increased from

5.92 to 7.17 mg/g (21%), and C16:0/ALL from 13.7 to 16.3%

(19%). A large difference (P = 5.25E210) for C16:0/ALL was also

observed in the BC3S2:3 population derived from 08BL248-2

containing the upstream introgression fragments of By804

(Figure 2A; Table S3). The mean C16:0 and C16:0/ALL values

in the individuals homozygous for the B73 allele were 5.79 mg/g

and 14.5%, respectively; these values increased to 6.88 mg/g and

16.8% in the individuals homozygous for the By804 allele, an

increase of 19% and 16%, respectively. A significant difference

(P = 6.68E212) of C16:0/ALL was also observed in the BC3S2:3

population derived from 08BL168-7, which contains only the 90-

kb introgression from By804. Increases from 5.92 to 7.12 mg/g in

C16:0 and from 13.9 to 16.9% in C16:0/ALL were observed

between individuals homozygous for the B73 allele and individuals

homozygous for the By804 allele, increases of 20% and 22%,

respectively (Table S3). This locus also significantly co-segregated

Table 1. QTL mapping results from a BC1S1:2 population with
129 individuals.

Traita Ab Left Marker Right Marker LOD R2 (%)

C16:0 (mg/g) 0.87 LB52 umc2213 4.05 15

C16:0/ALL (%) 1.28 LB52 umc2213 9.10 28

SFA/ALL (%) 1.16 LB52 umc2213 4.74 16

UFA/ALL (%) 21.18 LB52 umc2213 5.92 20

SFA/UFA (%) 2.03 LB52 umc2213 6.44 21

A major QTL between markers LB52 and umc2213 was found to be linked to all
these traits using Windows QTL Cartographer with 1,000 permutations at a
significance level of 0.05.
aTrait abbreviations can be found in the main text.
bThe additive effect of the By804 allele.
doi:10.1371/journal.pone.0024699.t001
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with the phenotypic variation of traits SFA/ALL, UFA/ALL and

SFA/UFA in the above mentioned populations (Table S3).

Progeny testing using BC3S2:4 populations with larger sample

sizes confirmed the significant differences between the homozy-

gous allele classes and the heterozygous genotype (Table S4).

Thus, QTL-Pal9 was narrowed down to a 90-kb genomic region

between LB262 and LB268 within AC218168 (Figure 2A).

As a final mapping step, a BC4S2:3 population with 132

individuals derived from a BC4S1 line with only the 90-kb genomic

region introgression from By804 between markers LB262 and

LB268 (08BL168-7; Figure 2A) was developed for progeny testing

and QTL fine mapping. QTL-Pal9 explained 33% and 69% of the

phenotypic variation for C16:0 and C16:0/ALL, respectively, in

this population. The maximum LOD was 35 and 77% of the

phenotypic variation was explained by the QTL-Pal9 locus in

these BC4S2:4 populations (Table S5 and Figure S2). These results

further indicate that the 90-kb genomic region contains the

underlying gene for QTL-Pal9.

Zmfatb is the gene underlying QTL-Pal9
Only one protein-coding gene was found in the target 90-kb

genomic region, as all other sequences were determined to be

repetitive sequences using multiple bioinformatics analysis meth-

ods (as detailed in the Materials and Methods). This gene is highly

similar to FATB (AT1G08510) in Arabidopsis, which encodes the

acyl-ACP thioesterase. Mutagenesis analysis of FATB in Arabidopsis

has shown that the deficiency of FATB results in much lower

palmitic acid content in leaves and leads to a smaller plant [22].

Analysis of the sequence and functional domain indicates that the

candidate gene mined in this study has the same gene structure (6

exons and 5 introns) as FATB and a similar acyl-ACP thioesterase

domain. Thus, we named the candidate gene reported here Zmfatb

(GRMZM5G829544) and deduced that it is the gene underlying

QTL-Pal9 (Figure 2B). The markers developed within the Zmfatb

sequence, LD42 and LD64, have the most highly significant

association with the measured phenotypes (Figures 2A and 2B),

which gives additional evidence that Zmfatb is the right candidate

gene for QTL-Pal9.

An 11-bp insertion/deletion is the functional site of
Zmfatb

The Zmfatb gene was sequenced in the entire association panel

of 155 lines (CAM155) assembled by Yang et al. [21] (Figure 3B).

In total, 16 InDels and 135 single-nucleotide polymorphisms

(SNPs) were identified over a 3,796 bp sequenced gene region.

Linkage disequilibrium within Zmfatb decayed relatively quickly

(Figure S3). The average r2 dropped sharply to 0.2 within only

500 bp and decayed to below 0.1 within ,3.5 kb; this is a

convenient LD decay rate for efficient association analysis of this

sequence in this panel. Meanwhile, fatty acids were measured in

three environments, and a broad range of variation was observed

in the CAM155 panel [21], of which palmitic acid content

ranged from 4.4 mg/g to 16.3 mg/g and had high heritability

(96.6%).

Figure 1. Informative recombinants identification combining association and linkage analyses. (A) Useful recombinants identified in the
BC2S1 population for nine markers falling within the previously identified QTL-Pal9. 2/2 and 2/+ is the homozygous allele of B73, allele that are
heterozygous at the target loci, respectively. (B) Association mapping results based on 14 markers in the target genomic region for the variation of
palmitic acid content in maize kernels based on association mapping in three subsets. (C) Three useful recombinants identified from two BC3S1

populations. 08BL245-6 and 08BL248-2 are from a BC3S1 population with 149 individuals of 07HL50-6. 08BL168-7 is from a BC3S1 population with 371
individuals of 07HL40-3 (lines presented in Figure 1A). 2/2 and 2/+ is the homozygous allele of B73, allele that are heterozygous at the target loci,
respectively.
doi:10.1371/journal.pone.0024699.g001
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The mixed linear model (MLM) controlling for population

structure and kinship [23] was used to test associations between

the detected polymorphisms and variation in five target traits

(C16:0, C16:0/ALL, SFA/ALL, UFA/ALL and SFA/UFA)

measured in three environments. Complete results from the

MLM analysis can be found in Figure 3, Table 2 and Table S6.

Seventeen polymorphic loci were highly associated with variation

of the five target traits in CAM155 at P,1.0E203 level

(Figure 3A). Among the 17 significant associations, two loci

(S_752 and S_768) are located in the 59 untranslated region

Figure 2. Narrowing down of QTL-Pal9 to a 90-kb genomic region. (A) Progeny tests in BC3S2:3 of three lines to compare the three
recombinant classes that delimited QTL-Pal9 to the region between LB262 and LB268. Progeny tests compared palmitic acid concentrations (C16:0/
ALL) using ANOVA to find significant differences between the three genotype classes. The black thicker lines represent BAC clones with their
accession number in NCBI. 2/2, 2/+ and +/+ is the homozygous allele of B73, allele that are heterozygous for B73 and By804 and homozygous allele
of By804, respectively. (B) Bioinformatics analysis of the target region, which contains only one gene, Zmfatb (the black arrow). The grey boxes
represent repetitive sequences.
doi:10.1371/journal.pone.0024699.g002

Figure 3. Association mapping results in CAM155 and graph of pairwise LD between significantly associated polymorphic sites of
Zmfatb. (A) Sites that were significantly associated with variation in the palmitic acid composition in Hainan, 2007. (B) The structure and functional
domain of Zmfatb. Filled black boxes represent exons, open boxes indicate the UTR and the gray dashed boxes mark the region sequenced in this
study. And the grey ellipse represents the acyl-ACP thioesterase domain encoded by the third, fourth, fifth and sixth exons. (C) A representation of
the pair-wise r2 among the significantly associated sites, where darker shading of each box corresponds to a higher r2. The red stars and black dashed
lines represent the most significant polymorphic loci.
doi:10.1371/journal.pone.0024699.g003
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(UTR), one (S_4409) is located in the 39 UTR, and all others are

in introns or exons. None of the polymorphisms in the exons cause

amino acid changes except S_4294, which is an 11-bp InDel in the

sixth exon. S_3543 and S_4294 had the highest and most stable

associations in all phenotypic datasets and are located in the same

LD block (r2 = 0.96; Figure 3C). The polymorphism at S_3543

occurred in an exonic region located in the functional domain but

is a synonymous mutation that does not cause amino acid

sequence changes. In contrast, the polymorphism at S_4294

results in an early stop codon in the protein. The S_752 and S_768

polymorphisms in the 59 UTR are in LD with S_4294 (r2 = 0.8),

and had some significant associations in many phenotypic datasets

(P = 1.0E205). No significance was, however, detected in some

environments for S_752 and S_768. Similarly, S_4409, which is

located in the 39 UTR and is in moderate LD with S_4294, shows

significant association in some environments, but no significance in

others. Based on these data, S_4294 in exon 6 was predicted to be

the functional mutation of Zmfatb that causes the observed

phenotypic changes in palmitic acid-related traits.

The B73 allele of the S_4294 InDel is 11-bp longer than the

By804 allele, leading to an early stop translation in B73. Using the

Swiss-Model homology modeling server and PyMOL, the three-

dimensional protein structure of the ZmFATB protein was

predicted based on an structural template, 2OWN, from Joint

Center for Structural Genomics (not published, x-ray resolution,

2.0 Å; Figure 4A). 2OWN consists of two parts of acyl-ACP

thioesterase domain in different chains A and B, which display

‘‘hot dog folds’’ [24]. ZmFATB shared 51% sequence identity with

2OWN (Figure S4). In maize, the catalytic domain of chain A and

B span in residues 12 to 259, and Asn-17, Ser-141, Val-181 and

Arg-259 together form the catalytic sites. The polymorphism at

S_4294 in B73 is an 11-bp insertion (Figure 4B) that can result in

an addition of 5 amino acids and a difference of 14 amino acids in

the C-terminal region as compared with the By804 allele

(Figure 4C and Figure S4). The different amino acids between

the B73 and By804 alleles are located after residue 260 which do

not reside in the acyl-ACP thioesterase domain. This may explain

why the 11-bp InDel did not cause extreme phenotypic variation

but only a quantitative change. The homology modeling analysis

suggested that the protein fragment at the 11-bp InDel plays an

important role as a portal or ‘‘door’’, which controls the quantity

of substrate entering into the reaction vessel ‘‘hot dog fold’’. The

B73 allele (increased by 5 amino acids) makes the portal smaller,

which is thus less accessible to the substrate, leading to the

observed decrease in palmitic acid content and variation in related

traits as well (Figure 4D).

Validation of the 11-bp InDel functional site in a larger
association panel

An easy-to-use PCR-based marker for Zmfatb was developed

from the sequence containing the 11-bp InDel (Figure 4B and

Table S1) and was used to genotype a larger and more diverse

association mapping panel with 527 lines (AM500) developed by

Yang et al. [25]. Five hundred and two inbred lines were

successfully genotyped for this polymorphism, of which 470 were

homozygous and 32 were heterozygous. Only two alleles (B73 and

By804) were identified with a minor allele frequency (MAF)

$0.05, but one other allele with an even longer deletion and a

frequency of 0.02 was identified. The B73 allele was present in the

association mapping panel at a frequency of 0.17, and the By804

allele at 0.74. In the whole panel, the 11-bp InDel was significantly

associated with the five target traits. The phenotypic variation

explained by this InDel varied from 5% for UFA/ALL to 16% for

C16:0/ALL (Table 2). This provides strong additional evidence

that the 11-bp InDel in the sixth exon of Zmfatb is the causal

polymorphism of QTL-Pal9.

In vivo Zmfatb expression analysis
Twenty days after pollination (DAP) is an important stage for

fatty acid biosynthesis. Many functional lipid metabolism genes in

the maize embryo are expressed at higher levels from 15 to 25

DAP; the oil percentage in the embryo increases quickly from 15

to 20 DAP in both high- and normal-oil lines [26]. As Zmfatb plays

an important role in the early stages of fatty acid biosynthesis and

because initial experiments showed some variation in Zmfatb

expression at 20 DAP using a single individual for each near-

isogenic line (NIL) genotype (Figure S5), we chose 20 DAP for

gene expression profiling and further analyses.

An analysis of Zmfatb mRNA expression was carried out in 32

individuals in the heterozygous and both homozygous classes (B73

and By804) in the 90-kb fragment introgression NIL background

(the BC4 generation). There were no differences in expression

levels in maize kernels among the three different genotypes

(Figure 5A). An additional expression test was run for a collection

of over 20 inbred lines that segregate at the 11-bp InDel

(Figure 5B). No difference in expression levels in maize embryos

was found among the three classes of alleles over two years

(P = 0.70, N = 22 in 2008 and P = 0.78, N = 20 in 2009). In

addition, the correlation coefficients between the variation of

Zmfatb expression and palmitic acid content are very low

(R = 20.09 and 20.18 in 2008 and 2009, respectively), making

it unlikely that the variation of kernel palmitic acid content is

regulated by differences in transcript levels. In addition, S_752 and

S_768, found in the 59 UTR and segregating in the inbred lines,

are also uncorrelated with Zmfatb expression variation (P = 0.25,

N = 22 in 2008 and P = 0.63, N = 20 in 2009). Thus, in vivo

expression analysis excludes the possibility that the variation seen

in target phenotypes are caused by expression variation and that

S_752 and S_768 are also functional sites. It does, however, give

Table 2. Associations between palmitic acid-related traits
and the 11-bp InDel of Zmfatb.

Panel
MAF
(%)a Traitsb P value

Zmfatb
2/2 Zmfatb +/+

R2

(%)c

CAM155 39d/82e C16:0 (mg/g) 3.09E206 7.9662.15 9.8762.67 11

C16:0/ALL (%) 4.69E209 13.9362.4 17.0262.43 25

SFA/ALL (%) 2.17E208 15.7862.42 18.8162.26 27

UFA/ALL (%) 2.91E208 84.1262.44 81.1162.26 26

SFA/UFA (%) 5.22E208 18.7563.27 23.1963.03 23

AM500 87d/370e C16:0 (mg/g) 1.05E205 6.0661.82 7.1661.85 6

C16:0/ALL (%) 2.77E209 15.0262.00 16.961.74 16

SFA/ALL (%) 4.57E208 17.1261.98 18.9861.79 15

UFA/ALL (%) 8.87E207 81.1062.13 79.2061.90 5

SFA/UFA (%) 2.45E205 21.106 0.03 23.9663.21 14

aMAF, minor allele frequency.
bTrait abbreviations can be found in the main text.
cR2 was calculated via ANOVA using the 2007 Hainan phenotypic data from the
Chinese Association Mapping Panel, which contains 155 maize inbred lines
(CAM155) [21] and 2009 phenotypic data from the Association Mapping Panel,
which contains 527 maize inbred lines (AM500) [25].

dThe number of inbred lines with the 11-bp insertion at the functional site.
eThe number of inbred lines with the 11-bp deletion at the functional site. 2/2
and +/+ is the homozygous allele of B73 and homozygous allele of By804
based on the 11-bp InDel, respectively.

doi:10.1371/journal.pone.0024699.t002

Genetic Analysis of Fatty Acids in Maize Grain

PLoS ONE | www.plosone.org 5 September 2011 | Volume 6 | Issue 9 | e24699



further indirect evidence that the 11-bp InDel causing the amino

acid variation is the functional site.

In vitro expression analysis of Zmfatb in E. coli
To further verify that the 11-bp InDel at S_4294 is the

functional site, a range of Zmfatb alleles was transformed into a

bacterial expression system that allows determination of enzyme

activity by measuring the free fatty acid released into the medium

[27]. Except for the empty vector, pBC, all Zmfatb alleles (B73

allele with 11-bp insertion, By804 allele with 11-bp deletion and

IB73, which carries the B73 allele but with 11-bp deletion created

by site-directed mutation) express active plant acyl-ACP Thioes-

terase (Figure 6A). Two colonies of each allele were randomly

selected and tested for thioesterase activity. Preliminary experi-

ments showed that fatty acid accumulation in the medium was

significantly different between the B73 and IB73 alleles after 18 h

and these differences were clearest at 36 h (Figure S6).

Consequently, we picked the 36-h time point to analyze the

function of the 11-bp InDel. As expected, the colonies containing

the By804 allele produced the most palmitic acid; colonies

containing the B73 allele produced the least palmitic acid; and

IB73 had significantly higher palmitic acid than did the colonies

with the unaltered B73 allele (Figure 6B). The IB73 allele

improved thioesterase activity by ,72% as compared with that

of the B73 allele, and this again confirms that the 11-bp InDel is

the functional polymorphism of Zmfatb and can affect the activity

of plant acyl-ACP thioesterase.

Validation of the Zmfatb effect in different genetic
backgrounds

Two F2:3 populations (Dan340 6K22 with 202 individuals and

K226CI7 with 227 individuals) that segregate at the 11-bp InDel

Figure 4. The 11-bp InDel is the functional polymorphism of Zmfatb. (A) Three-dimensional protein structure of ZmFATB, in which green line
indicates the acyl-thioesterase N-terminal domain (Acyl-thio_N), blue line indicates the acyl-ACP thioesterase C-terminal domain (Acyl-thio_C), and
the 11-bp functional site is shown in pink circles. (B) Gel image of the co-dominant marker based on the 11-bp functional site. (C) Amino acid changes
in B73 and By804 caused by the 11-bp InDel. (D) Variation in palmitic acid content between the BC4S3 lines carrying the 11-bp deletion and their near-
isogenic parent (B73) carrying the other haplotype of the InDel.
doi:10.1371/journal.pone.0024699.g004

Figure 5. Relationship between Zmfatb expression level and
palmitic acid content. (A) Expression analysis in BC4S2:3 NIL with the
11-bp insertion (allelic to B73, 2/2; N = 11), the 11-bp deletion (allelic
to By804, +/+; N = 10) and heterozygous allele, (B73 6NIL, 2/+; N = 11).
RQ is the abbreviation of relative quantity. (B) Correlation analysis
between Zmfatb expression level and palmitic acid content in diverse
elite inbred lines in embryos collected at 20 days after pollination in
2008 (left) and 2009 (right). The grey boxes and black diamonds
represent individuals that contain and lack the 11-bp fragment,
respectively. P values were derived from t-tests; R values represent
the correlation coefficient. RQ is the abbreviation of relative quantity.
doi:10.1371/journal.pone.0024699.g005
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showed a significant correlation between segregation of this allele

and the variation in traits C16:0, C16:0/ALL, SFA/ALL, UFA/

ALL and SFA/UFA in maize grain. The phenotypic variation of

the five target traits that was explained by the functional site varied

from 34 to 51% in the Dan3406K22 population, and 33–47% in

the K22 6 CI7 population (Table S7). Total oil content was,

however, not changed in the maize grain according to the

segregation at Zmfatb (P = 0.72 and 0.89, respectively).

Another 11 F2 populations and 2 BC1S2 populations were

developed based on the 11-bp InDel and the pedigree information

of the chosen lines in order to estimate the Zmfatb effect in different

genetic backgrounds (Table S8). A comprehensive analysis of all

populations found significant differences among the three

genotypic classes of Zmfatb (B73 homozygous, By804 homozygous

and heterozygous) for all five target traits (C16:0, P = 1.77E205;

C16:0/ALL, P = 6.07E209; SFA/ALL, P = 1.34E208; UFA/

ALL, P = 9.39E209 and SFA/UFA, P = 1.74E208). Separate

single-marker factor analyses of each segregating population were

also used to detect significant differences for all five target traits

across the three Zmfatb genotypes. The trends in each population

were similar, although the magnitude of the effect differed in

different genetic backgrounds (Figure 7 and Table S8). No QTL

affecting the total oil content was detected in this region, which is

consistent with the results found in the RIL (B73 6 By804) and

F2:3 (Dan340 6K22 and K22 6CI7) populations.

Discussion

Zmfatb functional model and its utilization
The selection of fatb by plant breeders can be traced over the

last century and fatb improvement is currently an active area of

research. Voelker et al. first cloned the fatb gene in Arabidopsis and

found that the expression of complementary DNA in seeds

resulted in the accumulation of more medium chain fatty acids

[28]. Topfer and Martini revealed regions of possible functional

importance by comparison of deduced amino acid sequences [29],

after which Salas and Ohlrogge were able to distinguish substrate

specificity of FATB acyl-ACP thioesterase from FATA acyl-ACP

thioesterase [30]. Use of Arabidopsis fatb T-DNA mutants allowed

the essential role of fatb saturated fatty acids in plant growth to be

systematically worked out [22], and fatb transgenic Brassica napus

with altered fatty acid expression profiles points to the evolutionary

origin of the plant acyl-ACP thioesterases [31]. To date, fatb genes

have also been characterized in Brassica campestris, Jatropha curcas

and Diploknema (Madhuca) butyracea [32–34]. However, although

this trait has been well-known for many years, fatb genes, especially

as quantitative genes, are rarely reported and to date, never

knowingly used in crop improvement.

In this study, we showed that Zmfatb is the gene underlying the

major QTL-Pal9 that affects palmitic acid content and related

traits in maize grain. Zmfatb is orthologous to Arabidopsis FATB,

which encodes acyl-ACP thioesterase. It can affect the palmitic

acid content of glycerolipids in multiple organisms and tissue

types, including seeds [22]. The gene structure of Zmfatb is similar

to that of Arabidopsis FATB, both of which contain 6 exons and 5

introns that are similar in their general organization; their protein

products are also conserved, with 78.4% identity at the amino acid

level. We have also shown through linkage and association

analyses that an 11-bp InDel in the sixth exon of Zmfatb is the

causal polymorphism of this QTL. The function of the 11-bp

InDel was confirmed by protein structure and expression analyses,

and further confirmed in different genetic backgrounds.

Although previous antisense and expression regulation studies in

Arabidopsis and soybean demonstrated that FATB expression

variation influences in vivo production and final levels of saturated

fatty acids in flowers and seeds [35–37], we did not observe Zmfatb

expression variation in in vivo expression profiling of the parents of

the NIL populations or multiple inbred lines. Nevertheless, the

phenotypic variation between each genotypic class of the Zmfatb

functional site is quite large. Zmfatb mRNA level is very high in

maize kernels (Figure S5), but the reduction of Zmfatb mRNA was

not sufficient to reduce C16:0 levels in certain tissues in our

studies, as had been described by Bonaventure et al. [22].

Expression level differences are therefore unlikely to cause the

phenotypic differences seen in this trait in maize.

The 11-bp InDel is not located in the functional domain or

active sites, but the structure of the protein and the concavity at

the 11-bp InDel site strongly suggest that it may play an important

role as a portal or ‘‘door’’ that controls the quantity of substrate

entering the reaction vessel. The By804 allele carries the 11-bp

deletion, which corresponds to a deletion of 5 amino acids, thus

making the portal bigger. This may provide greater access for the

substrate (Figure 4A), leading to the observed increase in palmitic

acid content and also to variability in related traits (Figure 4D).

Nine elite inbred lines analyzed in the association mapping panel

AM500 contained an even longer deletion; however, the palmitic

Figure 6. In vitro expression analysis of Zmfatb in E. coli. (A) MacConkey agar plate-based complementation screen for plant thioesterase
activity using different Zmfatb alleles. Colonies with functional alleles show varying shades of white, whereas those containing empty vector (pBC) are
pink. (B) Palmitic acid concentrations produced by different alleles of Zmfatb in the bacterial expression system after 36-h cultivation. Error bars
represent the standard deviation for two independent clones of each allele with three replicates per clone. pBC, the empty vector; B73, Zmfatb B73
allele; By804, Zmfatb By804 allele; IB73, Zmfatb B73 allele containing the in vitro–mutagenized 11-bp deletion.
doi:10.1371/journal.pone.0024699.g006
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acid content associated with this allele was not significantly

different (P = 0.76) compared to lines with the By804 allele. Since

the longer deletion allele is rare in this panel (MAF = 0.02), we

could not estimate the genetic effect accurately, and whether or

not the longer deletion further improves the accessibility for the

substrate must be the target of a new study.

The deletion of 11 base pairs (and 5 amino acids) is concomitant

with a change in 14 amino acids downstream of the deletion in the

By804 allele. The in vitro E. coli complementation test further

confirmed that these changes result in an increase in palmitic acid

levels. The enzyme encoded by the By804 allele has a stronger

enzymatic activity compared with the enzyme encoded by B73

allele (containing the 11-bp insertion, Figure S6).

As a functional gene underlying quantitative trait variation, the

11-bp InDel in the last exon of Zmfatb does not result in extreme

phenotypic variation, possibly because the mutation did not occur

in the functional domain and only affects the substrate access to

the encoding enzyme (as explained above). On the other hand,

there may also be other fatb iso-enzymes at work as well. In maize,

there are two copies of fatb [38]; the second is located on

chromosome 6 and also underlies a major palmitic acid content

QTL[9]. The locus on chromosome 6 may alleviate the functional

defect of QTL-Pal9; however, the gene effects of Zmfatb in the NIL

population and the E. coli complementary test (some, but not all of

which, contain a working copy of the chromosome 6 fatb) are

almost identical. This suggests that the majority of the quantitative

phenotypic variation is not caused by the complementary effect of

other iso-enzymes.

Increasing the unsaturated fatty acid concentration (by

decreasing the palmitic acid content) without changing the total

oil content in maize grain would increase the nutritional value of

the oil. Fatty acid content is currently quantified using gas

chromatography, which is very expensive and inaccessible to many

small laboratories and breeders from developing countries. PCR-

based, user friendly markers developed from well-validated genes

that underlie QTLs could be cheaply and quickly used for marker-

assisted selection, even in small breeding programs [39,40]. Here,

we identified the gene and functional mutation underlying a major

QTL in maize for saturated fatty acid composition that does not

affect the total oil content, which will be very useful for the

improvement of high-oil maize lines with a high ratio of

unsaturated to saturated fatty acids. The effect of the 11-bp InDel

is stable across different genetic backgrounds (Table S8) and the

insertion can reduce palmitic acid levels (C16:0) by an average of

1 mg/g, and palmitic acid concentration (C16:0/ALL) by 20%.

The 11-bp InDel at Zmfatb has no measured effects on other

Figure 7. Genetic effects of the 11-bp InDel for the five palmitic acid–related traits in 13 different genetic backgrounds. The y axis
represents the variation in levels of C16:0, C16:0/ALL, SFA/ALL, UFA/ALL and SFA/UFA. The different segregating populations are shown along the x
axis (1–11, F2 populations; 12 and 13, BC1S2 populations): 1, 7784-4Ht 6 832; 2, 7784-4Ht 6 Sy1035; 3, Mo17 6 Ji63; 4, By4839 6Mo17; 5, 832 6
Shen5003; 6, Shen50036U8112; 7, By8136By804; 8, By48396By815; 9, 4F16By4839; 10, By8156By804; 11, By8046By815; 12, (7784-4Ht6832)
67784-4Ht and 13, (By804 6 By815) 6By804. Blue, red and Green lines represent the homozygous allele of B73, the heterozygous allele, and the
homozygous allele of By804 based on the 11-bp InDel, respectively.
doi:10.1371/journal.pone.0024699.g007
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agronomic traits including total kernel oil content, kernel width

and kernel length (data not shown). Thus, the user-friendly PCR-

based marker developed from Zmfatb (Figure 4B) can be efficiently

used to improve oil quality in maize breeding programs.

Combining linkage and association mapping can speed
QTL fine mapping and cloning

Although it is not difficult to map a QTL to a 5- to 10-cM

interval, cloning the underlying gene from an interval this large is

still a very big challenge [41]. Here we present a comprehensive

protocol combining linkage and association mapping that takes

advantage of current and historical recombination events for QTL

cloning in those species with an available reference genome. We

recommend four steps when using this strategy, as follows:

(1) Map the target QTL to a small region (,5–10 cM) using

primary segregating populations (such as BC1, BC2, F2, F2:3, etc).

(2) Choose a small association mapping panel with a narrow

genetic background and develop markers based on annotation

information for genes in the target QTL region for association

analysis. The use of 74 Chinese elite inbred lines with an LD

decay of about 100 kb in the present study allowed the

candidate gene region to be narrowed down to ,100 kb. This

required the use of only one or two markers per 100-kb

region, and only those markers that segregate in the original

QTL mapping population should be used, thus increasing the

efficiency of finding the target gene. With the development of

next generation sequencing techniques [42] and the associated

cost decrease over traditional sequencing, two alternatives

should be considered for this step: a number of appropriate

fragments in the target genomic region can be sequenced in

the small panel (rather than developing markers from these

loci), which provides more markers per sequenced gene for

the association analysis; or the entire target region can be

sequenced by sequence capture technologies [43], which

allows the use of all polymorphisms in the region for the

association analysis.

(3) Significant associations can be used to score the primary

segregating populations to identify useful recombinants for

validation (for example, the three overlapping recombinants

in this study). Advanced backcrossed populations (BC4, BC5

or higher) are generally needed to homogenize the genetic

background for QTL fine mapping and cloning; however,

these populations may miss some of the informative

recombinants from the early generations. In this study, one

recombinant in the target genomic region was identified using

only 135 individuals from the BC2S2 population, whereas

4,732 individuals from the BC4S2 population were needed to

find one recombinant between the same two markers. The

underlying mechanism for the variation of recombinant

classes among different generations is still not very clear but

may be controlled by genetic factors [44,45].

(4) Once the target QTL is mapped to a small region (in this case,

90 kb), the candidate gene may be identified via bioinformatic

analysis. The function of the candidate gene(s) can then be

validated using association mapping with a bigger and more

diverse panel, which will also aid in the determination of the

functional polymorphism(s). The decay of LD in diverse elite

inbred lines in maize can be as small as 1–5 kb [46], a

resolution that will quickly and efficiently bring us to the level

of an individual gene. Other validation methods (expression,

transformation, etc.) may be used as appropriate with the

most promising gene(s).

Materials and Methods

Construction of the NIL population
The advanced backcross NIL population was developed as shown

in Figure S7. A RIL population was constructed from a cross

between B73 (low kernel oil content) and By804 (high kernel oil

content) by single-seed descent [9]. RIL129 from this population,

which derived 44.5% of its genetic background from B73, was the

high-palmitic acid donor parent, whereas B73 was the recurrent

parent. Starting from the BC1 population, 211 simple sequence

repeat markers were used to analyze the genetic background in the

backcross populations. Meanwhile, association analysis [23] using

simple sequence repeat markers in the target genomic region in a

natural population of 74 selected Chinese elite inbred lines was

employed to select informative recombinations. The selected lines

with the lowest amount of similarity to By804 in their background

and carrying useful recombination events in the target genomic

region were selfed for progeny validation and backcrossed to B73 to

create the NIL population. Map positions used throughout this

paper were based on the genetic maps created from the B73 6
By804 RIL population [9] or the BC1S1:2 populations. The details

of NIL construction, genotyping and traits measurements for each

generation can be found in the Method S1.

Candidate gene mining
The gene prediction software Genscan (http://genes.mit.edu/

GENSCAN.html) and Fgenesh (http://mendel.cs.rhul.ac.uk/mendel.

php?topic = fgen-file) and the maize EST and plant protein

databases (http://www.ncbi.nlm.nih.gov/) were used for candi-

date gene mining. For validation of the gene prediction, the

program CENSOR (http://www.girinst.org/censor/index.php)

was applied iteratively by a 10-kb increment for repetitive sequence

annotation. Gene functions were predicted through Interproscan

[47], KEGG [48] and Blast2GO using GO annotation [49].

Association mapping of Zmfatb
The whole Zmfatb gene was sequenced across a panel of 155

Chinese elite inbred lines [21] (CAM155; Figure S8). All primer

sequences used in this study are presented in Table S1. The

alignment of all sequences for polymorphism identification was

done using the multiple sequence alignment program MUSCLE

[50], and was refined manually using BioEdit [51]; refined

sequences were exported to Phylip [52] for further analysis.

Nucleotide polymorphisms including SNPs and InDels were

identified in TASSEL 2.0.1 [53] for all polymorphisms present

at a frequency of $0.05. TASSEL 2.0.1 was also used to calculate

r2 among Zmfatb polymorphisms with 1,000 permutations, and F-

tests were applied to measure the significance of LD between each

pair of polymorphic loci. A co-dominant PCR marker based on

the 11-bp InDel in Zmfatb was applied to genotype the larger panel

of AM500 representing global maize diversity [25] for validation.

The CAM155 [21] were grown and evaluated at the Agronomy

Farm in Beijing in the springs of 2006 and 2007 and in Hainan in

the winter of 2007. The AM500 [25] was planted in Yunnan (YN,

E 102u419, N 25u019) during the spring of 2009. Kernels from at

least three mature ears with the same genotype were pooled and

measured for fatty acid content according to Yang et al. [9]. The

mixed linear model [23] controlling both population structure (the

Q matrix) and relative kinship (the K matrix) was used to test for

statistical association between phenotype and genotype in the two

association panels using TASSEL 2.0.1 [53]. The genetic effects

explaining the phenotypic variation were calculated through the

analysis of variance between groups (ANOVA) in Excel 2007 for

each locus and haplotype.
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qRT-PCR analysis of Zmfatb in B73, By804, NILs and the
association panel

Plant tissues were collected from embryos at 20 DAP from more

than 20 Chinese elite inbred lines that were planted in the springs

of 2008 and 2009 in Beijing. In addition, we collected embryos at

20 DAP from 32 NILs (heterozygous or homozygous for B73 or

By804 at the target locus) at the BC4S2 stage in the spring of 2009

(Beijing). Harvested tissues were frozen in liquid nitrogen and

stored at 270uC until use. Total RNA was isolated using TRIzol

reagent (Invitrogen) and digested with RNase-free DNase

(Promega) as manufacturers’ instructions. RNA was subjected to

complementary DNA (cDNA) synthesis using AMV reverse

transcriptase and an oligo (dT) primer (Promega). qRT-PCR for

Zmfatb expression profiling was conducted with Ex Taq premix

(Takara Shuzo). The 2–DDCT method [54] with three replicates

was used to calculate average expression levels and standard

deviations of Zmfatb. A maize housekeeping gene (actin) was used

as an internal control. All primer sequences are listed in Table S1.

Complementation test of Zmfatb in E. coli mutant strain
K27

The coding sequences of the B73 (11-bp insertion) and By804

(11-bp deletion) Zmfatb alleles were amplified with primers FatBF

and FatBR, and the IB73 allele, which contains the B73 allele but

with the 11-bp insertion site-directed mutated to 11-bp deletion,

was amplified with primers FatBF and I73R, from maize

embryonic cDNA. Primer sequences are listed in Table S1. These

amplified sequences were cloned into the pBC SK2 phagemid

(Stratagene) using the SacI and XbaI restriction sites. This resulted

in a translational fusion between the N-terminal coding region of

lacZ and coding region of Zmfatb.

PCR reactions contained 1 ml 10 mM of each primer, 4 ml

2.5 mM dNTPs, 1.25 U PrimeSTAR HS DNA polymerase

(Takara Shuzo) and 25 ml 26PrimeSTAR GC buffer (Mg2+ plus).

Thirty cycles of 98uC for 10 s, 58uC for 25 s, and 72uC for 2 min

were performed. The acquired ,1.5-kb band and pBC plasmid

were cut with SacI and XbaI restriction enzymes (Fermentas Life

Science) and the bands were gel purified (PureLinkTM Quick Gel

Extraction Kit, TIANGEN) and ligated into the pBC plasmid

(Stratagene). The ligation mixtures were used to transform

electrocompetent K27 cells (CGSC #5478; The Coli Genetic

Stock Center at Yale). The transformation mixtures were spread

on LB plates containing 30 mg/ml chloramphenicol and placed at

30uC overnight. Six colonies for each vector were sequenced to

ensure that the coding sequence ligated to pBC was correct and in

the same frame with the lacZ coding sequence.

To validate the difference in the thioesterase activity of different

Zmfatb alleles, the fatty acid content in the BTNA medium (10 g/L

NZ-amine and 5 g/L NaCl, pH 7.0) was measured for every

Zmfatb allele along with accumulation over time. To ensure that

the OD values of every bacterial suspension were equal at each

time point, the OD values of the initial bacterial suspension were

consistent, and the inoculum was added in accordance with the

volume ratio of 1:100. All time points were measured three times

for two independent samples of each variant to calculate the

standard deviation and repeatability of the expression (Figure S6).

Two samples of each variant with the same OD value and equal

inoculum volume were cultivated in conical flasks containing

600 ml of BTNA medium with 30 mg/ml chloramphenicol at

30uC for 36 h, and then the fatty acid content in the BTNA

medium was measured for every Zmfatb allele variant. Fatty acid

content of the growing medium around various cell cultures was

determined by the production and measurement of fatty acid

methyl esters [27]. Briefly, 22 ml of glacial acetic acid and 1 ml of

1:1 (vol/vol) chloroform/methanol supplemented with 0.01 mg of

C19:0 (Sigma) as an internal standard were added to 0.5 ml of

medium from pelleted cells corrected to give an equivalent cell

density based on the OD600. After mixing by inversion, the phases

were separated by centrifugation, and the lower phase was

transferred to a fresh glass tube. The chloroform was evaporated

with a stream of nitrogen, and the pellet was resuspended in 1 ml

of 2% H2SO4 in methanol, after which the samples were heated to

90uC for 1 h. Samples were extracted once with 1 ml of 0.9%

NaCl and 2 ml of hexane. The organic phase was transferred to a

fresh tube and dried under nitrogen and then was resuspended in

400 ml of hexane. Samples (3 ml each) were analyzed on a gas

chromatography for fatty acid methyl ester contact.

Evaluation of the genetic effect of Zmfatb in different
genetic backgrounds

The 155 elite Chinese inbred lines cluster into four major

genetic groups: Beijing high-oil (BHO), Lancaster, Reid and Reid

high-oil (RHO) lines [21]. From each group, two lines with the

B73 allele (11-bp insertion) and two lines with the By804 allele (11-

bp deletion) were chosen and crossed reciprocally. Thus, a total of

sixteen elite inbred lines from both high-oil and normal-oil lines

were crossed to develop segregating populations to estimate the

effect of Zmfatb in different genetic backgrounds. Because some

crosses didn’t produce enough seeds, only 11 crosses from 12

unique lines were obtained (Table S9). S1 seeds from the 11

segregating populations were planted in the winter of 2008 in

Hainan and selfed to create S2 ears. S1 plants from 2 segregating

populations were backcrossed to one of their respective parents

and the BC1S1 were planted in the spring of 2009 and selfed to

create the BC1S2 segregating populations. Mature ears from these

11 S2 and 2 BC1S2 populations were harvested, and single kernels

were genotyped using LD42, the PCR marker developed from the

11-bp InDel (Table S1). The classified kernels from each

background were grouped according to the genotypes (B73 allele,

heterozygous allele or By804 allele). Each group was randomly

divided into three to six samples (depending on the number of

successfully genotyped seeds) for fatty acid extraction, and each

sample was measured in triplicate. A paired t-test comparing the

B73 allele and the By804 allele in 13 segregating populations and

an ANOVA for each population were used in Excel 2007 to

determine the Zmfatb gene effect in different genetic backgrounds.

Meanwhile, two F2:3 populations (derived from Dan340 6K22

and K22 6CI7) with 202 and 227 individuals, respectively, were

genotyped according to the 11-bp InDel and measured for their

grain lipid concentration. Single-marker factor analysis was done

in the two populations for the validation of the genetic effect of

Zmfatb on the variation of C16:0, C16:0/ALL, SFA/ALL, UFA/

ALL and SFA/UFA.

Prediction of three-dimensional structure for ZmFATB
We submitted the B73 ZmFATB protein sequence to the Swiss-

Model homology modeling server (http://swissmodel.expasy.org/

SWISS-MODEL.html) to obtain the most homologous three-

dimensional model using the automatic modeling mode [55].

PyMOL (http://www.pymol.org/) was used to view the three-

dimensional structure of ZmFATB.

Supporting Information

Figure S1 Linkage Disequilibrium decay in the genomic
region of QTL-Pal9, with a window size = 5 kb. A total of

442 SNPs spaced along the target region (Contig 373, www.
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maizesequence.org) was employed to calculate r2 in three

association mapping populations, including ‘‘Total lines’’, 74

randomly selected elite inbred lines; ‘‘High-oil lines’’, a subset of

34 high-oil lines; and ‘‘Normal-oil lines’’, a subset of 40 normal

elite lines. The calculations were performed in Tassel 2.0.1 with

1,000 permutations.

(TIF)

Figure S2 QTL mapping results in BC4S2:3 (A) and
BC4S2:4 (B) populations containing only the 90-kb
introgression between LB262 and LB268. Trait abbrevia-

tions can be found in Table S2. Images in both populations were

generated by Windows QTL Cartographer.

(TIF)

Figure S3 LD decays in Zmfatb. One hundred and fifty one

polymorphic sites (SNPs and InDels) distributed along the

sequence of Zmfatb were used to calculate r2 in 155 lines of the

Chinese Association Mapping Panel using TASSEL 2.0.1 with

1,000 permutations.

(TIF)

Figure S4 Sequence alignment among 2OWN, ZmFATB
in B73 and By804 and AtFATB in Arabidopsis. 2OWN

consisting of two chains A and B was obtained as the structural

template by screening the Protein data bank. The alignment was

first obtained from the MUSCLE program and then refined using

ESPript. Secondary structure elements are presented on top:

helices with squiggles, beta strands with arrows and turns with TT

letters. Conserved residues are written in red in sequences block.

Accessibility of 2OWN is rendered by a bar below: blue is

accessible, cyan is intermediate, white is buried. The catalytic

residues interacting with the substrate oxygen are labeled with

black pentacles.

(TIF)

Figure S5 Schematic diagram of Zmfatb gene expres-
sion profiling in NILs with the 90-kb introgression from
By804. Leaf, ear, 20P and 20R represent the leaf nearest to the

ear, the un-pollinated ear, embryos 20 DAP and endosperms 20

DAP, respectively. All tissues were extracted from a single plant.

2/2, +/2 and +/+ is the homozygous allele of B73, allele that

are heterozygous for B73 and By804 and homozygous allele of

By804 based on the 11-bp InDel, respectively. RQ is the

abbreviation of relative quantity.

(TIF)

Figure S6 Time-courses accumulation of fatty acid for
each allele of Zmfatb in E.coli system. pBC represents the

empty vector. B73, By804 are Zmfatb alleles of B73, By804,

respectively, and IB73 represents Zmfatb allele of B73 containing

the directly mutated 11-bp deletion.

(TIF)

Figure S7 The schematic diagram of NIL population
development for QTL-Pal9 fine-mapping and cloning. In

this population, RIL129, a recombinant inbred line consisting of

44.5% genetic background from B73 and 55.5% from high-oil

parental line By804, is the donor parent and B73 is the recurrent

parent. Marker screening was applied from the BC1 generation

and the useful recombination events in the target region were

selected by association mapping and validated by progeny tests.

(TIF)

Figure S8 Sequenced region of Zmfatb. Filled black boxes

represent exons, open boxes indicate the untranslated regions

(UTR), and grey dashed dot box marks the region sequenced in

this study. Colored arrows are the forward and reverse primers for

sequencing. Primers (FatB7F/FatB7R, LD63F/LD49R, LD49F/

LD51R and FatB2F/FatB2R) were overlapped for the sequencing.

(TIF)
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